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Executive Summary 

Air pollution is known for its detrimental health effects. Particulate matter (PM) pollution is one 

of the prominent drivers of the global burden of diseases (GBD) attributable to air pollution. To 

effectively manage air pollution, we need to measure it accurately and at high spatial resolution. 

However, maintaining a dense network of regulatory instruments is financially and technically 

burdensome for low- and middle-income countries. A hybrid approach that combines non-

conventional, less expensive, short-term stationary, and mobile deployments may be a cost-

effective solution. In the city of Bengaluru, India, we adopted such a hybrid measurement 

approach to generate high spatial resolution air pollution maps. We carried out a mobile 

monitoring campaign covering approximately 10% of roads in the city to measure on-road mass 

concentrations of fine particulate matter (PM2.5), black carbon (BC), and number concentrations 

of ultrafine particles (UFPs). We also conducted another campaign where we established and 

maintained a 55-node city-wide network of low-cost sensors to measure ambient PM2.5. Data from 

these two campaigns were corrected for their respective instrument biases and then used along 

with regulatory data from pollution control board monitors to predict pollutant levels at 50 m 

resolution using land-use regression models.  

Based on the mobile measurements, we found that on-road air pollution levels (for all three 

pollutants) were highest on major roads, followed by arterial and residential roads. The spatial 

gradient in PM2.5 (across various road types) was shallower compared to that of BC and UFPs. 

Also, the spatial representativeness of pollution maps increased when the number of drives on a 

route increased. On-road pollutant levels were higher than ambient pollution levels by a factor of 

2 to 10. Ambient PM2.5 levels (and their spatial variability) were higher in winter compared to 

summer. Daily mean ambient PM2.5 levels were within Indian regulatory standards. We also 

evaluated the performance of various low-cost PM sensors in measuring PM2.5.  

Several important variables emerged from the land-use regression (LUR) models as potential 

predictors of the spatial variation of ambient PM2.5. For example, area and line sources emerged 

as potential predictors for daytime on-road air pollution.  

The predicted spatial ambient mean PM2.5 was comparable across the Bengaluru Rural district 

(ranging between 33 µg m-3 and 42 µg m-3) and the Bengaluru Urban district (35 µg m-3 to 44 µg 

m-3), with little rural–urban contrast. The daytime on-road predicted PM2.5 exhibited higher levels 

(between 72 and 80 µg m-3) in the western parts of the Bruhat Bengaluru Mahanagara Palike 

(BBMP) area (including Dasarahalli, Rajarajeshwari Nagar, West, South, and parts of 

Bommanahalli) and very high concentrations (>88 µg m-3) on major roads (Bengaluru–Mysore 

Road, NICE Road, Kanakpura Road, Magadi Main Road, and Tumkur Road). The daytime on-road 

predicted BC and UFPs followed a similar pattern (lower concentrations along BBMP boundaries 

and higher concentrations in South and West zones and along major and arterial road networks). 

This work developed high-resolution maps of predicted ambient air pollution levels. The maps 

reveal that peri-urban and rural districts of Bengaluru have almost similar pollution levels. 

Regional mitigation action plans are, therefore, needed to effectively abate ambient air pollution. 

The primary policy recommendations from the work are (1) regulatory monitors need to be 

installed in non-urban areas, (2) supplementary monitoring using LCSs needs to be pursued in 

select regions in addition to the regulatory monitoring in urban areas, and (3) a mitigation plan 

is needed to reduce traffic-related emissions in western Bengaluru. 
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1. Introduction 

Being home to some of the most polluted cities in the world, India bears a very high burden of 

diseases and deaths associated with air pollution exposure. In 2019 alone, 1.67 million deaths 

were attributed to air pollution, accounting for ~18% of deaths in the country (Pandey et al., 

2021). The resulting economic loss due to lost productivity was around 1.35% of India’s gross 

domestic product (GDP) for the year. While the last two decades have seen a decline in deaths due 

to household air pollution, those due to ambient (or outdoor) particulate air pollution have 

increased substantially. Depending on the region, dominant sources of air pollution vary between 

industrial, household, energy production, and transportation sectors.  

In India, particulate matter (PM) is one of the major drivers of morbidity and mortality 

attributable to air pollution. Because of its small size, PM2.5 (i.e., fine particles with aerodynamic 

diameter less than 2.5 micrometres) can enter and deposit deep in our lungs, eventually reaching 

our bloodstream. Chronic exposure to PM2.5 contributes to the risk of cardiovascular and 

respiratory diseases. In 2019, long-term exposure to PM2.5 caused nearly 1 million deaths in India 

(State of Global Air, 2020). While PM2.5 mass concentration is a criteria pollutant, other PM 

constituents are also a growing health concern. Black carbon (BC; a component of PM), for 

instance, is produced from combustion—major sources being combustion engines (mainly 

diesel), coal-based power plants, biomass cooking, and agricultural waste burning. Many health 

outcomes linked to PM2.5 are also associated with BC (Janssen et al., 2011). Recent evidence shows 

that ambient BC can enter the foetal side of the placenta, exposing the developing foetus to air 

pollution (Bove et al., 2019). Another important metric of PM air pollution is number 

concentrations of ultrafine particles (UFPs; i.e., particles with size less than 100 nanometres 

[nm]). UFPs are either emitted directly from a source or formed in the atmosphere by 

photochemical aging of precursor gases. These particles have not been studied as extensively for 

their health effects as PM2.5, but evidence regarding their detrimental health effects is beginning 

to accumulate (Ohlwein et al., 2019). Given their size, UFPs, upon depositing in the respiratory 

track, can eventually reach many of the body’s organs, such as the liver, kidney, brain, and 

gastrointestinal tract (Schraufnagel, 2020). Short-term exposure to UFPs is associated with 

increased blood pressure and pulmonary inflammation, thus elevating the risk of cardiovascular 

diseases.   

Over the years, the Government of India has implemented several programmes to monitor and 

control air pollution. Under the National Ambient Air Quality Monitoring Programme (NAMP), 

India has ~800 monitoring locations covering 344 cities/towns. The National Clean Air 

Programme (NCAP) was unveiled in 2019 with the goal of improving air quality in 122 target 

cities. One of the key action points of NCAP is to increase ambient air quality monitoring (Ganguly 

et al., 2020). Currently, India’s monitoring capacity falls well below that of similar highly 

populated countries (Brauer et al., 2019). India has less than two monitors per 10 million people 

as opposed to China (12 monitors per 10 million people), the USA (34 monitors per 10 million 

people), and Brazil (18 monitors per 10 million people).  

Existing monitoring stations in India are concentrated in urban areas, leaving many parts of the 

country routinely under-monitored or without monitoring. This data gap and the high cost of 

purchasing and maintaining reference-grade monitors call for integrated approaches that 

combine conventional regulatory monitoring with innovative and affordable solutions, such as 

low-cost sensors (LCSs) and periodic mobile monitoring. Such a hybrid approach has the potential 
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to enhance the current monitoring capacity and bridge critical data gaps for effective air quality 

management1.  

Hybrid systems that use LCS networks in combination with mobile monitoring of on-road 

pollution concentrations are gradually being adopted by cities around the world to obtain a 

comprehensive picture of neighbourhood-level variations in air pollution. These hybrid systems 

have been shown to provide actionable data that can inform policy decisions. One such example 

is the Breathe London project, where mobile monitoring data are combined with stationary LCSs 

to generate high-resolution pollution maps, identify pollution hot spots in London, and assess the 

impact of pollution control measures2. Google Street View cars fitted with air pollution monitoring 

equipment have been used to capture high-resolution pollution data in several cities in Europe 

and US, such as Oakland, Copenhagen, Amsterdam, and Dublin.  

Though these monitoring techniques are gaining popularity globally, they are still relatively new 

to low- and middle-income countries (LMICs). Because of the unique challenges posed by low-

resource settings (e.g., high pollution concentrations and poor infrastructure), these innovations 

need to be evaluated for feasibility and scalability before they are integrated into air quality 

management programmes in LMICs. To achieve this goal, this project combined two innovative 

approaches—a dense network of stationary LCSs and mobile monitoring of on-road pollution—

to produce high-resolution air pollution data for the city of Bengaluru. The project helps test the 

feasibility and scalability of such an integrated approach for air quality monitoring in a prominent 

Indian urban centre. While mobile monitoring and LCS studies have been conducted in Indian 

urban centres before (Shiva Nagendra et al., 2019; CSTEP & ILK Labs, 2020), this project is the 

first of its kind to combine both modalities in a single geographic area to develop high-resolution 

pollution maps and estimate city-wide pollution levels using land-use regression models3. 

This study built on an existing low-cost PM sensor network in the Bengaluru Metropolitan Area 

that was established in 2019 via a collaboration between the University of Texas, the Center for 

Study of Science, Technology and Policy (CSTEP), and ILK Labs. We expanded the prior network 

(40 nodes) to a 55-node city-wide network. The new network covers a majority of the city area, 

major land-use types, and some peri-urban and rural locations around Bengaluru. Given that the 

market is flooded with LCSs that measure PM with varying levels of performance, we evaluated 

some of the most popular LCSs and documented best practices for conducting an LCS network 

project. The project team carried out a mobile monitoring campaign in several neighbourhoods 

and covered multiple road types—major, arterial, and residential—optimising protocols over an 

extended period of time. For the project, we covered over 1000 km of Bengaluru roads (around 

10% of the total length of city roads) and collected unprecedented levels of air quality data, giving 

unique insights into the city’s air pollution both spatially and temporally.  

 

1 https://www.vitalstrategies.org/resources/accelerating-city-progress-on-clean-air-innovation-and-

action-guide/ 

2 https://www.c40knowledgehub.org/s/article/The-Breathe-London-Blueprint-Supporting-cities-air-

pollution-monitoring-goals?language=en_US 

3 https://blog.google/products/maps/100-million-air-quality-measurements-with-air-view/ 
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Extensive air pollution monitoring activities under this project started in December 2021 and 

continued until May 2022. In this report, we present results obtained from data collected during 

these six months. 

For simplicity, the terms PM2.5, BC, and UFPs are used to indicate mass concentration of particulate 

matter (µg m-3) having size less than 2.5 microns, black carbon mass concentration (µg m-3), and 

number concentration of ultrafine particles (cm-3), respectively, in the rest of the report.  
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2. Objectives of the Study 

In this study, we aim to develop high-resolution pollution concentration maps in Bengaluru Urban 

and Rural districts using on-road measurements and land-use regression (LUR) models. We then 

analysed the resultant pollution estimates to produce a set of air pollution management and 

policy recommendations. The specific objectives of the study are as follows: 

1. Expand and maintain the existing PurpleAir low-cost PM sensor network in Bengaluru, India. 

2. Carry out performance comparisons of various PM LCSs. 

3. Develop air pollution models by utilising heterogeneous data sources: 

a. mobile monitoring and 

b. stationary low-cost network. 

4. Generate high-resolution PM2.5, BC, and UFPs maps for public awareness and actionable 

recommendations.  
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3. Instrumentation and Data Handling  

We measured daytime on-road PM2.5, BC, and UFPs as part of the mobile monitoring campaign, 

and network measurements of ambient PM2.5 were carried out using LCSs. A suite of instruments 

was used to measure on-road and ambient pollution and meteorological parameters (see Figures 

1, 2, and 3). Instruments measuring on-road pollutant concentrations were configured to collect 

data at 1 Hz logging and averaging frequency. All instruments were factory-calibrated prior to the 

initiation of the measurement campaign and regularly monitored for their performance and 

reliability. Reference data on ambient air pollution were taken from the regulatory grade 

instruments installed on the CSTEP roof terrace at a height of ~10 m above ground level and ~110 

m away from the main road. 

3.1 On-road Air Pollution Measuring Equipment and Mobile Platform 

3.1.1 Garmin 

A GPSMAP 64s (Garmin Ltd., USA) was used to record location information (latitude and 

longitude) of the mobile monitoring vehicle. GPSMAP 64s is a high-sensitivity Global Positioning 

System (GPS) receiver with a quad helix antenna. The instrument works on the principle of 

trilateration to provide accurate location information. More details on this device can be found at 

garmin.com.  

3.1.2 DustTrak  

A DustTrak (DT) DRX Aerosol Monitor (model: 8533, TSI Incorporated, Minnesota, USA) was used 

to measure on-road PM2.5. It is a portable, battery-powered instrument that can measure both 

mass and size fraction. It detects PM based on the optical scattering technique, operates at a flow 

rate of 3 litres per minute (L/min), and is capable of high temporal resolution PM mass 

concentration measurements. It can simultaneously measure PM1, PM2.5, PM4, PM10, and the total 

suspended PM. The instrument’s measurement range is 1 to 150,000 µg m-3. We used a factory-

calibrated instrument for the monitoring campaign. On a daily basis, before starting 

measurements, the instrument was zero-calibrated and checked for any flow/filter errors. For 

more technical details on the instrument, refer to Viana et al. (2015), Rivas et al. (2017), and 

tsi.com. 

3.1.3 microAeth  

A microAeth (mA; model: AE51, Aethlabs, San Francisco, USA) was used to measure the on-road 

BC mass concentration. It is a palm-size, battery-powered instrument that measures the change 

in light attenuation at 880 nm with and without an aerosol sample and converts the attenuation 

measurements to BC mass concentration. The instrument collects air samples on a Teflon-coated 

glass fibre filter media, and the measurement range is from 1 to 1000 µg m-3. It can be used at 

variable flow rates and logging intervals. For the current study, the instrument was configured to 

operate at 100 m L/min. The instrument is sensitive to vibration. More technical details about the 

instrument can be found at aethlabs.com. 

3.1.4 Condensation Particle Counter 

A condensation particle counter (CPC; model: 3007, TSI Incorporated, Minnesota, USA) was used 

to measure on-road fine particle number concentration. It is a battery-powered handheld 

portable instrument that can measure particles of size from 10 nm to >1 μm. The instrument 

https://www.garmin.co.in/products/discontinued/gpsmap64s-sea/
https://tsi.com/products/aerosol-and-dust-monitors/aerosol-and-dust-monitors/dusttrak%E2%84%A2-drx-aerosol-monitor-8533/
https://aethlabs.com/microaeth/ae51/overview
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works on the principle of optical detection and has a flow rate of 0.7 L/min. Isopropyl alcohol is 

used as the working fluid. The alcohol-rich chamber in the instrument is supersaturated in 

alcohol, causing particles to grow in size, and the particles are then counted in the optical 

chamber. The instrument measurement range is from 0 to 100,000 cm-3. More technical details of 

the CPC can be found at tsi.com. In the current study, CPC measurements were used to indicate 

levels of UFPs. 

3.1.5 Ultrasonic Personal Air Sampler  

An Ultrasonic Personal Air Sampler (UPAS; Access Sensor Technologies, Fort Collins, USA) was 

used for the filter-based sample collection of PM2.5 during the mobile monitoring campaign. UPAS 

is a palm-sized battery-powered air monitor suitable for household and personal exposure 

monitoring. It consists of a 2.5-micron size selective inlet and operates at a flow rate of 1 L/min. 

A pre-weighed Teflon membrane filter (37 mm) is used for sampling the PM. The instrument can 

be connected to a proprietary mobile application through Bluetooth. More technical details on the 

UPAS monitor are available on accsensors.com. 

3.1.6 Relative Humidity Monitor 

Equinox (EQ-172), a palm-sized and battery-powered data logger, was used for on-road 

measurements of temperature and relative humidity. As the data logger can store a maximum of 

16,350 data points, we used two loggers sequentially during monitoring hours. The measurement 

range of non-condensing relative humidity and temperature is from 0% to 100% and from −40 

°C to +70 °C, respectively. 

3.1.7 Mobile Platform 

The mobile platform for the on-road air pollution measurements was a custom-fit CNG 

(compressed natural gas) car. Shelves for instruments were installed in the car by removing one 

of the rear passenger seats. All instruments were powered using their internal batteries. 

Instruments were placed close to the rear door windows of the car to ensure unobstructed airflow 

to them for sampling. Windows were kept open throughout the monitoring campaign. To reduce 

vibrations and ensure safety, instruments were given ample cushioning and secured using bungee 

cables. 

3.2 Ambient Air Pollution Measuring Equipment 

3.2.1 Beta Attenuation Monitor  

A beta attenuation monitor (BAM; model: BAM-1022, Met One Instruments, Inc., Grants Pass, 

USA) was used to measure the ambient PM2.5. The model used is a federal equivalent method 

(FEM) instrument certified by the United States Environmental Protection Agency (USEPA) for 

measuring 24-hour mean PM2.5. The measurement technique of the instrument is based on the 

beta attenuation principle. It consists of a very sharp-cut 2.5 microns cyclone and a heated inlet 

that removes excess moisture in the sampled stream. BAM operates at a flow rate of 16.7 L/min. 

It has a 14C isotope as the source for beta particles and a scintillation detector. The BAM is also 

equipped with meteorological sensors for measuring ambient temperature, relative humidity, and 

pressure. More details about the instrument are available at metone.com.  

https://tsi.com/products/particle-counters-and-detectors/condensation-particle-counters/condensation-particle-counter-3007/
https://www.accsensors.com/air-sampling
https://metone.com/products/bam-1022/
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Figure 1: A collage of instruments used for on-road air pollution monitoring  

(source: tsi.com, garmin.com; aethlabs.com; accsensors.com) 

 

 

Figure 2: A collage of the instruments used for ambient air pollution monitoring (source: metone.com; aerosol.si)  
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3.2.2 Rack Mount Aethalometer 

A Rack Mount Aethalometer (model: AE33, Aerosol Co. Ljubljana, Slovenia) was used to measure 

ambient BC mass concentrations. The instrument measures the optical absorption (same as that 

of mA) of an aerosol sample at seven wavelengths. The AE33 samples aerosol onto a glass fibre 

filter tape and analyses the attenuation of light through the sample. The measured attenuation is 

converted into absorbing aerosol mass concentration by the instrument software, following the 

Beer–Lambert–Bouguer law. The instrument has dual spot technology to compensate for loading 

errors. The absorbing mass concentration obtained at 880 nm is considered BC. We operated the 

AE33 at a flow rate of 2 L/min with a 2.5-micron cut cyclone attached at the end of the sample 

tubing. The AE33 can also apportion BC into fossil fuel combustion–emitted and biomass 

burning–emitted categories using an inbuilt algorithm. Detailed technical information of AE33 

can be found at aerosol.si. 

3.2.3 PurpleAir  

For the LCS network, we used PurpleAir PA-II-SD (PurpleAir, Inc., USA) to measure ambient PM2.5. 

PurpleAir (PA; Figure 3) is a low-cost PM monitor that uses a pair of PMS-5003 (Plantower Co., 

Ltd., China) laser counters to measure and log real-time PM1, PM2.5, and PM10. In addition to PM 

measurements, PA also measures temperature, pressure, and relative humidity. PA is based on the 

Internet of Things (IoT) platform, and data are stored in a cloud server. PA also has an SD card 

version. The raw data from the instrument are logged at 2 minutes averaging intervals. The 

effective measurement range of PM2.5 is from 0 to 500 µg m-3. The maximum consistency error in 

PM2.5 measurements is ±10% in the 100 to 500 µg m-3 range and ±10 µg m-3 in the 0 to 100 µg m-

3 range. PA provides PM2.5 data in two different channels, labelled PM2.5 (cf_1) and PM2.5 (cf_atm).  

 

Figure 3: A PurpleAir LCS (source: purpleair.com) 

 

3.3 Collocation Experiments 

The DT and PA instruments measure PM2.5 based on aerosol light scattering. As this technique is 

sensitive to various factors in addition to PM mass concentrations, correction is required for light 

scattering–based PM2.5 measurements. To derive correction equation/factors, one of the popular 

methods is to collocate the devices with reference-grade instruments—federal equivalent method 

(FEM) or federal reference method (FRM)—and derive a statistical relationship between the two 

PM2.5 measurement systems. As the composition of on-road and ambient PM2.5 can be quite 

different, we conducted on-road collocation for DT and ambient collocation for PA. DT was 

collocated with the filter-based UPAS sampler during mobile monitoring rides (one filter sample 

for one day’s ride). We collected 54 samples and executed eight blanks during the study period. 

https://aerosol.si/en/mproducts/model-ae33-aethalometer/
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The pre-weighing and post-weighing of filters were carried out at the Colorado State University, 

Fort Collins. Details of the gravimetric analysis can be found in L’Orange et al. (2021). Based on 

this data, a study period mean correction factor for DT PM2.5 was derived. Three PA sensors were 

collocated with BAM on the CSTEP roof terrace throughout the study period. Real-time data from 

both instruments were then used to derive month-wise correction equations for PA PM2.5 

measurements. 

For the performance evaluation of various LCSs in measuring PM2.5, we collocated 10 different 

LCSs with BAM throughout the study period. The sensors under evaluation were mostly 

assembled in India. 

3.4 Data Cleaning and Correction 

Because of the portable and semi-reference-grade nature and limited dynamic range of 

instruments, the air pollution data collected using such instruments often require a quality check 

and subsequent corrections. Most mobile monitoring instruments needed instrument-specific 

corrections. 

3.4.1 Global Positioning System Measurements  

Owing to uncertainties in GPS measurements, latitude and longitude information from the Garmin 

device was required to snap to the nearest road feature for mobile monitoring measurements in 

most cases. We considered a maximum of 30-metre error distance for the snapping procedure, 

beyond which data were discarded. We used the k-nearest neighbour algorithm to snap 

measurements to the nearest OpenStreetMap (OSM) road feature. The ‘snapPointsToLines’ 

function in the ‘R’ programming language was used for snapping. 

3.4.2 DustTrak PM2.5 

The correction factors obtained from the DustTrak and UPAS collocation experiments were 

applied to 1 Hz on-road PM2.5 data collected during the mobile monitoring campaign. 

3.4.3 microAeth BC 

As the mA instrument is sensitive to vibration, which happens during mobile measurements, we 

used the algorithm developed by Apte et al. (2011) to remove spurious BC data. Next, we applied 

a loading correction algorithm demonstrated in Ban-Weiss et al. (2009). 

3.4.4 Condensation Particle Counter UFPs 

The CPC’s dynamic range of particle number concentration measurements is less than that of 

Bengaluru on-road levels. To overcome this, we used the CPC-3007 along with a diluter 

(characterised by a dilution ratio of ~5.5; Ban-Weiss et al., 2009). The measurements were 

corrected to the dilution ratio for further analysis. 

3.4.5 Hour-of-the-Day Correction  

Pollution levels vary both spatially and temporally. Although mobile measurements capture 

spatial variation, we need to correct temporal bias to account for diurnal variations in emissions 

and boundary layer height. To do this, we applied an hour-of-the-day correction (Apte et al., 2017) 

in addition to the instrument-specific corrections described above. This method uses 

multiplicative correction factors derived using ambient measurements from BAM for PM2.5 and 

AE33 measurements for BC. Given that ambient measurements were not available for UFPs, we 
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applied BC correction factors to UFPs measurements. Month-wise factors were derived and 

applied to on-road air pollution data.  

3.4.6 PurpleAir PM2.5 

PM2.5 data from individual dual laser counters were temporally averaged to one-hour intervals. A 

quality check criterion was applied on the hourly PA PM2.5 based on the difference in values from 

the dual Plantower laser counters, following Barkjohn et al. (2021). PM2.5 is considered valid only 

if the difference between PA’s measurements from the dual laser counters is less than 5 µg m-3 or 

61% of the absolute concentration reading. Correction factors obtained from PA and BAM 

collocation experiments were used to correct the one-hour averaged PM2.5 from PA. Using 

corrected hourly PM2.5 measurements from PA, daily, monthly, and seasonal averages were 

computed, following 75% completeness criteria.  

3.4.7 Gridding 

The on-road 1 Hz pollution data was gridded to 50 m uniform road segments. On a daily basis, all 

1 Hz measurements falling in the grid were averaged. Using daily gridded data, a grid-wise median 

of daily means was computed to represent a particular grid pollution level. 

Because of the gold standard nature of BAM and AE33, no corrections were applied to their 

measurements. More details on the correction algorithms mentioned above can be found in 

CSTEP & ILK Labs (2020). A schematic of all the data handling and correction procedures is given 

in Figure 4. 

 

Figure 4: Schematic illustrating various cleaning and correction procedures applied to collected data  
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3.5 PurpleAir Network 

We established a city-wide PA network to measure ambient PM2.5. The installation was carried 

out following best practices outlined in CSTEP & ILK Labs (2022a). Under this network, around 

55 sensors were installed, covering various land-use categories in the Bengaluru Rural and Urban 

districts. Out of the 55 sensors, 8 sensors were installed in the Bengaluru Rural district, 5 in peri-

urban Bengaluru, and the rest in the Bruhat Bengaluru Mahanagara Palike (BBMP; Bengaluru 

municipal corporation jurisdiction) area. All sensors deployed in the field were new or 

refurbished. The network was set up / refurbished between October and November 2021. In 

addition to using ambient PM2.5 measurements from the PA network, we also used reference-

grade PM2.5 data from eight continuous ambient air quality monitoring stations (CAAQMS) 

installed by the Karnataka State and Central Pollution Control Boards (PCB). Geographical 

locations of the PA sensors and CAAQMS are shown in Figure 5. 

 

Figure 5: Geographical locations of the PA network and the PCB (regulatory) stations  
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3.6 Mobile Monitoring Routes 

In this study, we aimed to measure on-road air pollution levels of the Bengaluru Urban district, 

covering around 10% of the total road network (i.e., 10% of ~11,500 km). Around 1,200 km of 

roadways (~900 unique km) were identified for the mobile monitoring campaign, and they were 

divided into 11 unique routes (each route covering around 100 km). Each route was covered 

within a day during daytime (from 9 a.m. to 5 p.m.). The majority of the monitoring happened 

between December 2021 and May 2022, but a few rides were conducted in the months of 

November 2021 and June 2022. Most of the rides were conducted on non-rainy weekdays. Each 

route was also mapped on weekends at least once during the study period. All unique routes (11) 

were driven at least four times, three routes were driven eight times, and five routes were driven 

12 times. Based on the OSM road classification, routes were categorised into four types—major, 

arterial, residential, and unclassified roads—by combining relevant categories. The study routes 

are shown in Figure 6, and more details of unique routes (as abbreviated in the bottom panel of 

Figure 6) are provided in Table A1. The total distance driven during the sampling campaign was 

~10,600 km (via 665 drive hours), and more than 2 million data points were collected. 
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Figure 6: Mobile monitoring route (top panel) colour indicates the type of the road; colour (bottom panel) indicates 

the unique route  
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3.7 Land-Use Regression  

Land-use regression (LUR) is a well-established model for simulating high-resolution spatial 

variability of urban-level air pollution (Hoek et al., 2008; Eeftens et al., 2012; Messier, 2018). In 

this study, we adopted the LUR methodology developed in the European Study of Cohorts for Air 

Pollution Effects (ESCAPE) study. The methodology was built on a supervised stepwise regression 

procedure. As the first step, mean pollutant concentrations were regressed linearly with 

shortlisted predictors, and the predictor giving the highest adjusted coefficient of 

determination (R2) was included in the model if the direction of effect was as defined a priori. A 

positive (negative) direction of effect indicated that the predictor acted as a source (sink) of air 

pollution. In the next step, each predictor was added to the model one by one, and the predictor 

resulting in the highest gain in the model adjusted-R2 and following the direction of effect was 

retained. The procedure was continued until the addition of any predictor to the model resulted 

in a gain of less than 0.01 in the model adjusted-R2. As the final steps of the model training, the 

potential predictors remaining in the model were tested for their statistical significance (p-

values) and collinearity or variance inflation factor.  

We sequentially removed all predictors with p-values greater than 0.1. The influential 

observations (pollutants) were identified based on Cook’s D values. The model was reassessed 

after removing non-significant and collinear predictors and influential observations. The model’s 

performance was evaluated based on a 10-fold cross-validation procedure. In the 10-fold CV 

method, we randomly split the spatial data into 10 folds and fitted the model using 9 folds and 

predict the remaining fold, with the predictions evaluated against the true value. This process was 

repeated ten times, thus ensuring every fold was evaluated. The final step was to calculate Moran’s 

I value to investigate the spatial autocorrelation in model residuals. In this study, we trained LURs 

using the monthly and seasonal ambient PM2.5 (using data collected by PurpleAir network 

sensors) and on-road BC, PM2.5, and UFPs (using data sets collected by mobile monitoring). Once 

the model was trained, spatial predictions of pollutant levels were carried at 50 m resolution.  

3.7.1 Predictor Variables  

Predictor variables are selected based on their linkage to an area's environmental characteristics, 

especially those that influence pollution emission intensity and dispersion efficiency. The list of 

predictors considered in the current study, their buffer sizes, and their direction of effect are listed 

in Table 1. The broad classification of predictors includes (i) land use and land cover (LULC), (ii) 

demographic and geographic variables, (iii) road and rail network, (iv) satellite-based pollution 

parameters, and (v) reanalysis-based meteorological parameters. The buffer sizes of eligible 

predictors were adopted from Eeftens et al. (2012). For model training, we excluded predictors 

where most (>75%) values were the same. 
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Table 1: The list of shortlisted predictors used for LUR model training 

Data set (source) Predictor Unit Buffer size (m) 
Direction 

of effect 

Land use  

(ESA Worldcover, 2020 

product) 

Surface area of built-up area  m2 100, 300, 500, 1000, 5000   + 

Surface area of permanent water bodies  m2 100, 300, 500, 1000, 5000   - 

Surface area of tree cover  m2 100, 300, 500, 1000, 5000   - 

Surface area of bare/sparse vegetation  m2 100, 300, 500, 1000, 5000  +/- 

Surface area of cropland  m2 100, 300, 500, 1000, 5000  +/- 

Sum of grassland, scrubland/shrubland, and herbaceous wetland  m2 100, 300, 500, 1000, 5000   - 

Population 

(GHSL, 2015 product) 
Number of inhabitants # 300, 500, 1000, 5000    + 

Elevation (SRTM) Square root of the elevation m1/2 NA - 

Sensor height Square root of the sensor height m1/2 NA - 

Geographical variables 

(GPS)  

Longitude oE NA +/- 

Latitude oN NA +/- 

Road network 

(OSM, 2021 product) 

Road length of total roads in buffer m 25, 50, 100, 300, 500, 1000 + 

Road length of residential roads in buffer m 25, 50, 100, 300, 500, 1000 + 

Road length of primary and secondary roads m 25, 50, 100, 300, 500, 1000 + 

Road length of tertiary roads m 25, 50, 100, 300, 500, 1000 + 

Inverse distance and inverse square distance to the nearest road m-1; m-2 NA + 

Train network (OSM) Length of train tracks within the buffer  m 100, 300, 500, 1000, 5000 + 

Airport (OSM) Inverse distance to the airport m-1 NA + 

Industry sources 

(secondary data) 
Inverse distance to the nearest industry m-1 NA + 
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Data set (source) Predictor Unit Buffer size (m) 
Direction 

of effect 

NDVI (Sentinel 2) Surface area of green vegetation -1 to +1 100, 300, 500, 1000, 5000 - 

Light intensity 

(VIIRS) 
Night-time light intensity    NA + 

NO2 (TROPOMI) Tropospheric vertical column of NO2 mole m-2 NA + 

AOD (MODIS-MAIAC) Aerosol optical depth - NA + 

Meteorological data 

(ERA5-Land) 

2 m temperature of air K NA - 

2 m pressure Pa NA + 

10 m eastward component of wind m/s NA +/- 

10 m northward component of wind m/s NA +/- 

10 m wind speed m/s NA - 

Total precipitation m NA - 

ESA: European Space Agency (Zanaga et al., 2021); GHSL: Global Human Settlement Layer (Freire et al., 2016); SRTM: Shuttle Radar Topography Mission (Farr et al., 2007); 

OSM: OpenStreetMap (OpenStreetMap contributors, 2021); NDVI: Normalised Difference Vegetation Index (Gascon et al., 2016); VIIRS: Visible Infrared Imaging Radiometer 

Suite (Veefkind et al., 2012); TROPOMI: TROPOspheric Monitoring Instrument (Van Geffen et al., 2020); MODIS-MAIAC: MODerate Resolution Imaging Spectroradiometer-

Multi-Angle Implementation of Atmospheric Correction (Lyapustin et al., 2018); ERA: European Centre for Medium-Range Weather Forecasts Reanalysis (Muñoz-Sabater et 

al., 2021).
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3.8 Performance metrics 

We used the following statistical metrics to evaluate the performance of the models trained. They 

are (i) coefficient of determination (R2), (ii) root mean square error (RMSE), and (iii) normalised 

root mean square error (NRMSE): 
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where x and y represent pollutant concentrations from two different data sets and n is the number 

of data points. For the NRMSE calculation, we used the gold standard data set (labelled y) mean 

to normalise RMSE. 
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4. Results 

4.1 Performance Evaluation of Various LCSs 

Preliminary results of evaluations have already been reported in CSTEP and ILK Labs (2022b). 

We present the seasonal comparison of the performance of LCSs here. The performance of 10 

PM LCSs was compared. They are PurpleAir, Airveda, PAQS, BlueSky, Atmos I, Atmos II, Aerogram, 

Prkruti, Aurassure, and Prana Air (Figure 7). Tables A2 and A3 summarise several physical, 

technical, and operational characteristics of the LCSs under evaluation. For deriving 

performance metrics, individual sensors’ PM2.5 data (characterised by different logging and/or 

averaging periods) were temporally averaged to one hour and daily (24 h) periods. 

 
Figure 7: Low-cost sensors (LCSs) under evaluation 

Figure A1 shows the time series of the daily mean PM2.5 for the 10 LCSs and BAM. A few LCSs 

overestimated PM2.5 compared to BAM measurements, and a few underestimated. Overall, the 

LCSs PM2.5 measurements captured the temporal trend in PM2.5. The seasonal mean (standard 

deviation) BAM PM2.5 measurements were ~44 µg m-3 (15.2 µg m-3) and 34 µg m-3 (10.7 µg m-3) 

for winter (DJF) and summer (MAM), respectively. Figures 8 and 9 show scatter plots of hourly 

mean PM2.5 from BAM and LCSs for winter and summer, respectively. It can be observed that the 

bias in LCS PM2.5 is not uniform across sensors. Table 2 summarises the season-wise performance 

metrics of the LCSs PM2.5. Across LCSs, no remarkable seasonal differences in performance were 

observed. The highest bias was observed in PAQS PM2.5, with RMSE values of ~34.1 μg m-3 and 

33.2 μg m-3 for winter and summer, respectively. NRMSE values ranged between 0.22 and 0.80 for 



 

35    www.cstep.in  

CSTEP 

winter and 0.23 and 0.86 for summer. The performance of PurpleAir, Airveda, Prana Air, BlueSky, 

and Prkruti was almost similar across seasons. Aerogram exhibited better performance in 

summer compared to winter. PM2.5 from Aurassure was evaluated for the summer season only as 

it was installed late. 

 

Figure 8: Scatter plots of hourly mean LCSs and BAM PM2.5 for winter (DJF) 

 

Figure 9: Scatter plots of hourly mean LCSs and BAM PM2.5 for summer (MAM) 
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Table 2: Season-wise performance statistics of hourly LCS PM2.5 measurements  

(N represents the number of paired data points) 

Sensor 
N R2 RMSE (µg m-3) NRMSE 

DJF MAM DJF MAM DJF MAM DJF MAM 

BlueSky 2108 1719 0.83 0.90 15.9 17.9 0.37 0.44 

Airveda 2111 1859 0.76 0.70 14.4 15.3 0.34 0.38 

Aerogram 2092 1747 0.84 0.82 12.5 9.8 0.29 0.25 

Prkruti 2058 1569 0.66 0.46 21.4 28.2 0.51 0.77 

Atmos I 2111 2140 0.85 0.81 9.9 9.0 0.23 0.23 

Atmos II 684 2140 0.79 0.86 9.5 13.9 0.22 0.36 

Prana Air 1371 1727 0.66 0.60 14.4 16.9 0.34 0.44 

PurpleAir 

(cf_atm) 
2092 2046 0.85 0.82 12.0 9.9 0.28 0.25 

PAQS 2105 2122 0.59 0.49 34.1 33.2 0.80 0.86 

Aurassure NA 1008 NA 0.85 NA 8.5 NA 0.23 

Further, LCS performance was evaluated based on daily mean PM2.5. Figures A2 and A3 show 

scatter plots of daily PM2.5 from BAM and LCSs for winter and summer, respectively. The 

performance metrics indicate that the daily mean LCS PM2.5 is more accurate and precise 

compared to the hourly averages (Table A4). The NRMSE of the daily mean LCS PM2.5 varied 

between 0.11 and 0.74 for winter and 0.11 and 0.78 for summer.  

In addition to PM2.5, we also evaluated the performance of LCSs (Figures A4 and A5 and Table A6) 

in measuring ambient relative humidity (RH) and temperature (T). We used the meteorological 

station–measured RH and T as gold standard measurements. Most of the LCSs overestimated T 

and underestimated RH (except Prana Air). Prana Air measurements of RH were relatively 

accurate (R2=0.93, RMSE=6.7%, and NRMSE=0.11), and PAQS measurements of T were relatively 

accurate (R2=0.87, RMSE=3.0 OC, and NRMSE=0.12). The performance evaluation of RH and T 

measured by LCSs is vital as these parameters can be used in developing correction equations to 

improve the accuracy of LCS PM2.5 measurements. 

4.2 Calibration of Optical PM2.5 

4.2.1 DT PM2.5 

We used on-road gravimetric PM2.5 to correct on-road 1 Hz DT PM2.5. We estimated the limit of 

quantitation (LOQ) for the filter sample dust mass using the field blank dust mass values. Mean 

plus five times the standard deviation of the field blank dust mass values were used as the LOQ 

metric, which was found to be ~50 µg. The sample mass below the LOQ was removed from further 

estimation of gravimetric PM2.5. Out of 54 filter samples, only 19 samples qualified for the LOQ 

condition. The ratio of averaged gravimetric PM2.5 (combining all 19 samples) to averaged DT 

PM2.5 was estimated and used as the correction factor to correct on-road DT PM2.5. The correction 

factor (CF) was found to be ~0.56 ± 0.27. As data were collected during daytime, we have not 

applied any RH correction factors to DT PM2.5. 

𝐶𝐹𝐷𝑇−𝑃𝑀2.5
=

𝑃𝑀2.5−𝑔𝑟𝑎𝑣𝑖𝑚𝑒𝑡𝑟𝑖𝑐  

𝑃𝑀2.5−𝐷𝑇
         (4)  
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4.2.2 PA PM2.5 

Month-wise bias (RMSE) of uncorrected hourly PA PM2.5 ranged between ~13 and 35 µg m-3. To 

improve the accuracy of PA PM2.5, we explored training various statistical regression models—

which include univariate, multivariate, linear mixed-effects, and general additive models—using 

collocation data to arrive at the best-performing PA correction model for Bengaluru. The model 

training was performed using hourly BAM PM2.5, PA PM2.5, PA T, and PA RH. A multivariate 

regression model (with PM2.5 and RH terms) for cf_1 channel PA PM2.5 emerged as the best 

performing model. This is in line with the observation made by Barkjohn et al. (2021).  

We built month-wise models to account for any temporality in model coefficients. Regression 

coefficients of trained models for individual months are provided in Table A7. All the coefficients 

are statistically significant. Scatter plots between model-corrected PA PM2.5 and BAM PM2.5 are 

shown in Figure 10. Month-wise performance metrics of the corrected PA PM2.5 are provided in 

Table A8. After the application of the correction factors, the accuracy of corrected PA PM2.5 

improved significantly, and the month-wise bias (RMSE) of hourly PA PM2.5 ranged between 5 and 

10 µg m-3. The accuracy in the corrected PA PM2.5 further improved when hourly corrected PA 

PM2.5 was averaged to daily intervals.  

For further analysis and LUR model building, we used only the corrected DT PM2.5 and PA PM2.5. 

 

Figure 10: Month-wise scatter plots between corrected hourly PA PM2.5 and BAM PM2.5 (top row) and daily mean 

corrected PA PM2.5 and daily mean BAM PM2.5 (bottom row)  
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4.3 Mobile Monitoring ‘Data-Only’ Pollution Route Maps and Statistics 

The ride-to-ride (all unique routes combined) variations in the gridded pollutant levels are shown 

in Figure A6. From the figure, it is clear that spatial variability (irrespective of the route) is higher 

in BC and UFPs compared to the variability in PM2.5. Following our previous study (CSTEP and ILK 

labs, 2020), we used the median of gridded daily mean pollutant levels to generate route maps of 

on-road air pollution, representing the study period's central tendency. Figure 11 shows the route 

map of on-road PM2.5, BC, and UFPs generated from four repeat rides. Quantile colour scales are 

used. Across the study route, on-road PM2.5 ranged from ~13 µg m-3 to >1000 µg m-3, BC ranged 

from ~1 µg m-3 to >2000 µg m-3, and UFPs ranged from ~2 x 103 cm-3 to 420 x 103 cm-3. Spatially 

averaged pollution levels after four passes were ~88 µg m-3 for PM2.5,  

36 µg m-3 for BC, and ~67 x 103 cm-3 for UFPs. Route maps from eight and 12 repeat rides are 

provided in Figure A7 and Figure 12, respectively. 

Not surprisingly, major roadways are characterised by the highest levels of pollution. Wall-to-wall 

driving, where the vehicle is driven through most of the roads in the neighbourhood, showed the 

highest levels in the industrial area of Peenya (PNY). The lowest PM2.5 concentrations were 

observed in the Indiranagar (IND) area, a residential neighbourhood, and similar results were 

seen even after 12 passes (Figure 12). Residential areas (Indiranagar, HSR Layout, Rajarajeshwari 

Nagar, and Malleswaram) clearly showed a gradient; pollution levels decreased as we moved away 

from the main road. BC and UFP spatial maps also exhibited a spatial pattern similar to PM2.5.  



 

39    www.cstep.in  

CSTEP 

 

 

 

Figure 11: Route maps of on-road PM2.5, BC, and UFPs derived using data from four repeat rides 
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Figure 12: Route maps of on-road PM2.5, BC, and UFPs derived using data from 12 repeat rides   
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When grouped by road classification (Figure 13), residential roads experienced lower 

concentrations, followed by arterial and major roads. The difference between major and arterial 

roads was more pronounced for BC and UFPs. In our study area, we had 81 km of road that was 

unclassified (as per OSM). Unclassified roads are shown separately in the plots. The average 

pollutant levels for unclassified road segments were found to be higher than the levels for 

residential roads. See Table 3 for more detailed statistics. 

 

 

 

Figure 13: Distribution of on-road pollutant levels by road type. The central line of the box represents the median, the 

dot represents the mean, the box represents the inter-quartile range (IQR), and whiskers represent the 5th and 95th 

percentiles. Outliers are omitted for readability. 
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Table 3: Road classification–wise pollutant level statistics. SD represents the standard deviation 

12 repeat rides 

road type 
Mean SD 

5th 
percentile 

25th 
percentile 

50th 
percentile 

75th 
percentile 

95th 
percentile 

Minimum Maximum 

PM2.5 (µg m-3) 

Major 90 23 60 73 87 102 132 45 222 

Arterial 77 31 46 58 70 85 129 25 372 

Residential 53 17 35 43 50 60 78 13 264 

Unclassified 59 25 37 47 56 67 85 22 511 

All roads combined 73 29 40 53 67 86 122 13 511 

BC (µg m-3) 

Major 59 33 21 35 52 73 121 10 289 

Arterial 26 22 9 13 20 32 63 4 227 

Residential 10 4 5 7 9 11 16 2 44 

Unclassified 12 7 5 7 10 14 25 3 52 

All roads combined 31 30 6 10 18 43 91 2 289 

UFPs (x 103 cm-3) 

Major 122 50 57 88 112 143 222 20 340 

Arterial 65 37 20 36 57 86 133 10 271 

Residential 25 16 12 15 21 30 53 6 167 

Unclassified 30 23 11 16 23 35 75 7 184 

All roads combined 68 54 13 24 52 101 171 6 340 



 

43    www.cstep.in  

CSTEP 

Based on the common route data, we compared pollution levels from four and eight repeat rides 

with levels from 12 repeat rides. The NRMSE (with respect to central tendencies of the 12 repeat 

rides) of the four repeat routes’ PM2.5, BC, and UFPs is ~0.35, 0.65, and 0.40, respectively. Similarly, 

the NRMSE of the eight repeat routes’ PM2.5, BC, and UFPs is ~0.20, 0.27, and 0.20, respectively. 

This clearly shows that spatial representativeness of pollution levels increases with an increase 

in the number of repeat rides. 

On-road concentrations of PM2.5 and BC were consistently higher than ambient levels throughout 

the study period (Figure A8). On-road PM2.5 was around two to three times higher than ambient 

PM2.5 levels, while on-road BC was around five to 10 times higher than ambient BC levels. Here, 

ambient levels refer to reference-grade measurements carried out at CSTEP. 

4.4 Ambient PM2.5 Statistics  

The precision of PA PM2.5 was investigated in several in-house collocation experiments (before 

field deployment) and found to be satisfactory. The coefficient of variation was well within the 

target metrics specified by USEPA (Duvall et al., 2021). The accuracy in PA PM2.5 measurements 

significantly improved after they were corrected using the month-specific correction equation. 

Box plots in Figure A9 depict spatio-temporal variations in the daily mean PM2.5. The plot includes 

corrected PM2.5 data from the PA network and regulatory PM2.5 measurements from PCBs. The 

highest PM2.5 values were observed during March 2022, followed by December 2021, February 

2022, January 2022, April 2022, and May 2022. See Table 4 for month-wise site mean statistics. 

The PM2.5 seasonal mean across all sites was 42 µg m-3 and 36 µg m-3 for winter and summer, 

respectively. The spatial variability was higher during winter months (as evident from the range, 

SD, and IQR) compared to summer months. Ambient PM2.5 levels in peri-urban and rural areas of 

Bengaluru were comparable with urban PM2.5 levels.  
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Table 4: Month-wise site mean statistics 

Pollutant Mean SD 
5th 

percentile 

25th  

percentile 

50th  

percentile 

75th 

percentile 

95th  

percentile 
Minimum Maximum 

December 

2021 
45 5.4 36 41 45 48 54 33 57 

January 

2022 
39 6.1 30 35 39 42 50 22 55 

February 

2022 
43 5.5 34 41 44 46 51 27 60 

March 2022 48 5.5 38 44 48 52 58 37 61 

April 2022 35 4.5 27 33 35 37 42 22 48 

May 2022 26 4.9 19 23 27 29 35 18 40 
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4.5 Land-Use Regression Modelling 

4.5.1 On-road Air Pollution Models 

Separate LUR models were developed for on-road PM2.5, BC, and UFPs using data from the mobile 

monitoring of roads with four, eight, and 12 repeat rides. Thus, nine distinct LURs were developed 

(three pollutants and three levels of repeat rides). 

The ‘four repeat rides’ data set (data from all roads with four repeat rides) represents the largest 

road length: 877 km, 308 drive hours, and ~17k road segments. The ‘eight repeat rides’ data set 

(data from all roads with eight repeat rides) represents a relatively smaller road length: 686 km, 

448 drive hours, and ~13k road segments. The ‘12 repeat rides’ data set (data from all roads with 

twelve repeat rides) comprises the smallest road length of the three: 421 km, 675 drive hours, 

and ~8k road segments.  

Table 5 presents the results of the nine LUR models. For the mobile monitoring models, we used 

only the daytime mean meteorological parameters. From the table, it is apparent that LUR models 

using data from 12 repeat rides performed better compared to others (models using data from 

four and eight repeat rides) for all the pollutants. For instance, the four repeat rides BC model was 

able to explain only 17% (model adjusted-R2 = 0.17) of the variance in data, while the 12 repeat 

rides BC model was able to explain 45% (model adjusted-R2 = 0.45) of the variance. The highest 

model adjusted-R2 was observed for the 12 repeat rides UFPs model (0.58), followed by the 12 

repeat rides BC model (0.45) and the 12 repeat rides PM2.5 model (0.29). The validation RMSE 

also followed the same trend. The model adjusted-R2 and validation (10-fold CV) R2 were very 

similar, indicating stable models.  

On-road pollutant models included three to five final potential predictors (Table 5). In all the on-

road LUR models, highway road length and tertiary road length at a small buffer of 25 m emerged 

as predictors. This showed that on-road air pollution levels were being influenced by spatially 

immediate sources. The best on-road PM2.5 model included four predictors: highway road length 

in 25 m buffer, tertiary road length in 25 m buffer, NDVI in 100 m buffer, and wind speed. BC and 

UFPs models performed better compared to PM2.5 models. Explanatory predictors for the best BC 

model were highway road length and tertiary road length in 25 m buffer and built-up area in 5000 

m buffer, indicating anthropogenic sources. The best UFPs model explained 58% of the variability 

and included rail track length and NDVI in a 5000 m buffer along with highway road length and 

tertiary road length. The Moran’s I statistic for model residues is also provided in Table 5.  

4.5.2 Ambient PM2.5 Models 

We trained monthly, seasonal, and study period mean LUR models using the PA network ambient 

PM2.5 data. For LUR training, the gridded satellite data and reanalysis data were interpolated to 

50 m spatial resolution. Model performance was validated using both 10-fold cross-validation and 

leave-one-out cross-validation (LOOCV). LUR training and validation statistics are summarised in 

Table 6. Among monthly models, the highest adjusted-R2 (0.41) was for January; the lowest 

adjusted-R2 (0.15) was for May. We developed monthly models and included one to four 

predictors (Table 6). Variables indicative of areas sources/sinks (shrubland and bareland) 

emerged as final predictors in most of the monthly models. The ranked correlation between the 

model and measured PM2.5 was the strongest and highest for the January model. Moderate 

validation R2 (0.46) and lower RMSE (10-fold = 4.6 μg m-3 and LOOCV = 4.9 μg m-3) values were 

observed for the January model. Among seasonal models, the winter (DJF) model performed 
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better with higher model adjusted-R2 (0.30) over the summer model (0.17). The performance 

metrics of the winter model were comparable to that of the January model, with moderate values 

of validation-R2 (0.34) and lower RMSE (10-fold = 4.2 μg m-3 and LOOCV = 4.5 μg m-3). The 6-

months (DJFMAM) model performance was superior to all other models with better model 

adjusted-R2 (0.41), validation-R2 (0.45), and RMSE (10-fold = 3.9 μg m-3 and LOOCV = 4.2 μg m-3). 

The Moran’s I statistic for the model residues is also provided in Table 6. Moran’s I values were 

much lower for ambient PM2.5 models compared to on-road air pollution LUR models. 
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Table 5: LUR models for on-road air pollution and their descriptive statistics 

Pollutant N Final model predictors 
Adjusted-R2 

(model) 
Validation- 
R2 (10-CV) 

RMSE 

(10-CV) 

ρ 

(model) 

Mean 
measured 

concentrations 
Moran’s I 

Four repeat 
rides: PM2.5 

(µg m-3) 
16930 

ndvi_100m + bareland_1000 + 
percentagewaterbody_5000 + 

highwayroadlength_25 + 
precipitation 

0.15 0.16 52 0.42 89 0.18 

Eight repeat 
rides: PM2.5 

13210 

ndvi_100+ndvi_5000 + 
bareland_1000 + 

highwayroadlength_25 + 
tertiaryroadlength_25 

0.27 0.26 30 0.61 79 0.17 

12 repeat 

rides: PM2.5 
7837 

ndvi_100 + highwayroadlength_25 + 
tertiaryroadlength_25 + windspeed 

0.29 0.29 24 0.69 73 0.13 

Four repeat 
rides: BC (µg 

m-3) 
16890 

inversedistancetoindustry + 
highwayroadlength_25 + 
tertiaryroadlength_25 

0.17 0.17 41 0.71 36 0.14 

Eight repeat 
rides: BC 

13205 
cropland_500 + 

highwayroadlength_25 + 
tertiaryroadlength_25 

0.34 0.34 27 0.75 33 0.15 

12 repeat 

rides: BC 
7836 

Builtup_5000+highwayroadlength_25 
+ tertiaryroadlength_25 

0.45 0.46 22 0.82 31 0.12 

Four repeat 
rides: UFPs 
(x 103 cm-3) 

16923 
shrubland_5000 + 

highwayroadlength_25 + 
tertiaryroadlength_25 

0.38 0.38 43 0.72 67 0.19 

Eight repeat 
rides: UFPs 

13176 
shrubland_5000 + cropland_1000 + 

highwayroadlength_25 + 
tertiaryroadlength_25 

0.47 0.47 38 0.77 68 0.17 

12 repeat 

rides: UFPs 
7780 

highwayroadlength_25 + 
tertiaryroadlength_25 + rail_5000 + 

ndvi_5000 
0.58 0.58 35 0.83 68 0.13 
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Table 6: LUR models for ambient PM2.5 and their descriptive statistics. N represents the number of data points after removing influential observations. 

Time 
period 

N Final model predictors 
Adjusted-

R2 (model) 
Validation-R2 

(10-CV) 

RMSE  
(10-CV)  
(μg m-3) 

RMSE 
(LOOCV) 
(μg m-3) 

ρ 
(model) 

Mean 
measured 

concentrations 
(μg m-3) 

Moran’s I 

December 
2021 

43 
ndvi_300 + vwind + 

bareland_500 
0.38 0.42 4.0 4.4 0.62 45 -0.03 

January 
2022 

54 

inv_sq_dis_nearest_ind + 
elevation + 

shrubland_300 + 
rail_1000 

0.41 0.46 4.9 4.6 0.69 39 -0.03 

February 
2022 

45 
elevation + temperature + 

shrubland_500 + 
bareland_500 

0.27 0.34 4.4 4.6 0.52 43 -0.01 

March 
2022 

45 
inv_dis_airport + 

elevation + 
shrubland_100 

0.25 0.31 4.3 4.8 0.61 48 0.01 

April 
2022 

41 
shrubland_500 + 

highwayroadlength_25 
0.21 0.25 4.5 4.9 0.13 35 -0.01 

May 2022 42 inv_dis_ind 0.15 0.18 4.7 5.5 0.44 26 -0.01 

Winter 
(DJF) 

44 
shrubland_300 + 
baerland_1000 

0.31 0.34 2.2 4.5 0.51 42 -0.01 

Summer 
(MAM) 

40 
shrubland_5000 + 
bareland_500 

0.17 0.22 3.8 4.2 0.47 36 -0.02 

Winter + 
Summer 
(DJFMAM) 

39 
long + shurbland_300 + 
highwayroadlength_25 

0.41 0.45 3.9 4.2 0.61 39 -0.02 
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4.6 Spatial predictions 

4.6.1 On-road air pollution 

The LUR models developed with the data of the 12 repeat rides were found to be best performing 

compared to the four and eight repeat-ride models. Hence, on-road predictions were made using 

the 12 repeat-ride models. Spatial predictions (~0.7 million in number) of on-road air pollution 

were carried out at a 50 m distance and limited to the BBMP area of the Bengaluru Urban district. 

The predictions represent the study period daytime mean pollutant concentrations.  

The city mean–predicted on-road PM2.5, BC, and UFPs were ~65 µg m-3, 18 µg m-3, and 38 ⨯ 103 

cm-3, respectively. Daytime on-road mean PM2.5 values were higher (~65 µg m-3) compared to 

their ambient counterparts (~45 µg m-3). Figure 14 shows the spatial variation of daytime on-

road PM2.5, BC, and UFPs. Across the BBMP area, predicted PM2.5 varied between 10 and 170 µg 

m-3. On-road PM2.5 exhibited higher values (between 72 and 80 µg m-3) in the western parts of the 

BBMP area, which include Dasarahalli, Rajarajeshwari Nagar, West Zone, South Zone, and parts of 

Bommanahalli. As expected, PM2.5 concentrations were higher along major roads and arterial 

roads. The Bengaluru–Mysore Road, NICE Road, Kanakapura Road, Magadi Main Road, and 

Tumkur Road were characterised by high levels of PM2.5 (>88 µg m-3). Most of the eastern parts 

were characterised by low levels of on-road PM2.5 (<60 µg m-3). 

On-road levels of BC and UFPs followed almost a similar pattern, with lower values observed 

along the BBMP boundary. Higher concentrations were observed in the South and West zones. 

Moderate values were observed in the rest of the BBMP area. As expected, daytime on-road BC 

concentrations were higher (>22 µg m-3) along the major and arterial road network. Higher to 

moderate concentrations (>15 µg m-3) were observed in most of the zones (South, West, parts of 

Rajarajeshwari Nagar, Bommanahalli, Dasarahalli, East, and Mahadevpura). Daytime on-road 

UFPs were higher (>80 ⨯ 103 cm-3) along major roads. They were between 50 ⨯ 103 cm-3 and 60 

⨯ 103 cm-3 in the West and South zones, respectively. UFPs were characterised by larger spatial 

variability (in terms of SD and IQR) compared to BC and PM2.5 (see Table 7). 

Table 8 summarises on-road air pollution statistics for various road types. The box plot (Figure 

15) depicts the variation in PM2.5, BC, and UFPs concentrations for different road types (major, 

arterial, residential, and unclassified roads). Major roads observed the highest levels of pollution 

(PM2.5: ~81 µg m-3, BC: ~39 µg m-3, and UFPs: ~80 ⨯ 103 cm-3 ), followed by arterial roads 

(PM2.5: ~65 µg m-3, BC: ~15 µg m-3, and UFPs: ~33 ⨯ 103 cm-3), residential roads (PM2.5: ~60 µg 

m-3, BC: ~12 µg m-3, and UFPs: ~22 ⨯ 103 cm-3), and unclassified roads (PM2.5: ~58 µg m-3, BC: 

~13 µg m-3, and UFPs: ~21 ⨯ 103 cm-3).  
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Figure 14: Spatial distribution of on-road pollution levels of PM2.5 (top panel), BC (middle panel), and UFPs 

(bottom panel) as predicted by LUR models 
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Table 7: Predicted on-road pollution statistics 

Pollutant Mean SD 
5th 

percentile 

25th 

percentile 

50th 

percentile 

75th 

percentile 

95th 

percentile 
Minimum Maximum 

PM2.5 (µg m-3) 65 11.7 48 58 65 71 84 10 170 

BC (µg m-3) 18 12.0 4 11 16 20 44 0.1 160 

UFPs (⨯ 103 cm-3) 38 27.0 10 20 32 48 93 0.01 313 

Table 8: Predicted on-road air pollution statistics by road type 

Road type 
Number of 

predictions 
Mean SD 

5th 

percentile 

25th 

percentile 

50th 

percentile 

75th 

percentile 

95th 

percentile 
Minimum Maximum 

 PM2.5 (µg m-3) 

Major 37,276 81 19 50 66 82 94 111 35 165 

Arterial 155,811 65 14 43 54 65 76 87 19 160 

Residential 367,253 60 11 41 52 60 68 76 23 113 

Unclassified 143,661 58 15 36 46 57 69 83 16 127 

 BC (µg m-3) 

Major 37,276 39 21 12 18 38 54 76 0.1 158 

Arterial 155,811 15 13 1 4 14 23 35 0.1 149 

Residential 367,253 12 7 1 6 12 17 22 0.1 84 

Unclassified 143,661 13 10 1 5 13 18 27 0.1 98 

 UFPs (⨯ 103 cm-3) 

Major 37,276 80 43 11 44 82 107 157 0.01 313 

Arterial 155,811 33 27 3 13 24 47 81 0.01 296 

Residential 367,253 22 16 2 90 19 33 53 0.01 165 

Unclassified 143,661 21 22 0.8 47 13 34 57 0.01 217 
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Figure 15: Distribution of predicted on-road pollutant levels by road type. The central line of the box represents the 

median, the dot represents the mean, the box represents the inter-quartile range (IQR), and the whiskers represent 

the 5th and 95th percentiles. Outliers are omitted for readability.  
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4.6.2 Ambient PM2.5 

Ambient LUR model predictions were used to map PM2.5 at a very high spatial resolution over the 

Bengaluru Urban and Rural districts. Spatial predictions were carried out at locations 50 m apart 

(~1.8 million points covering the study region). We predicted ambient PM2.5 using models 

characterised with a minimum of 0.30 model adjusted-R2 value. Following the criteria, we were 

left with four models pertaining to December 2021, January 2022, winter (DJF), and winter and 

summer combined (DJFMAM; see Figures 16 and 17). We also removed possible outliers from 

predictions, following the method suggested by Henderson et al. (2007). A lower and upper limit 

equal to the lowest −50% and the highest +50% PM2.5 values from the monitoring campaign was 

set, and any values beyond these thresholds were removed from the distribution. 

Across the study months and seasons, predicted PM2.5 values ranged between 10 and 100 µg m-3 

within the study region. The mean PM2.5 was comparable across the Bengaluru Rural district 

(ranging between 33 µg m-3 and 42 µg m-3) and the Bengaluru Urban district (35 µg m-3 to 44 µg 

m-3). Within the BBMP region, values ranged between 38 µg m-3 and 45 µg m-3. We observed very 

small differences in the predicted PM2.5 between Bengaluru Urban and Rural districts. Detailed 

statistics are provided in Table 9. Differences in the study period mean and median PM2.5 values 

over Bengaluru Rural, Bengaluru Urban, and BBMP regions were less than the LUR model RMSE 

values. 

The mean PM2.5 was the highest in December 2021, followed by winter 2021–2022, January 2022, 

and DJFMAM. In December 2021, high PM2.5 concentrations (>50 µg m-3) were observed in the 

eastern part of the study region. Isolated hotspots in the western peri-urban region coincided 

with stone-crushing locations. The January 2022 map indicated higher concentrations within the 

Bengaluru Urban district and also in the BBMP region. Parts of Mahadevpura, Dasarahalli, 

Rajarajeshwari Nagar, West Zone, and South Zone showed clusters of higher PM2.5 during January 

2022. Bommasandra and Attibele areas were also characterised by higher PM2.5 (>50 µg m-3). 

Lower PM2.5 (~33 µg m-3) was observed in the Bengaluru Rural district (except a hotspot region 

in the northern part of the district). 

During winter, a few rural and peri-urban regions were characterised by higher PM2.5 (Figure 17). 

Peri-urban hotspots coincided with stone-crushing locations (similar to that observed in 

December 2021). Winter spatial mean PM2.5 values for the Bengaluru Urban district (39 µg m-3), 

BBMP region (41 µg m-3), and Bengaluru Rural district (38 µg m-3) were comparable. The study 

period mean spatial map (winter and summer seasons combined, DJFMAM) exhibited a gradient 

in PM2.5, which increased towards the eastern parts of the study region.  
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Figure 16: Spatial distribution of predicted ambient PM2.5 for the months of December 2021 (top panel) and January 

2022 (bottom panel) 
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Figure 17: Spatial distribution of predicted ambient PM2.5 for the winter period (DJF; top panel) and winter plus 

summer period (DJFMAM; bottom panel) 
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Table 9: Predicted ambient PM2.5 statistics by region 

Month/season 
Mean 

(µg m-3) 

SD  

(µg m-3) 

5th 

percentile 

(µg m-3) 

25th 

percentile 

(µg m-3) 

50th 

percentile 

(µg m-3) 

75th 

percentile 

(µg m-3) 

95th 

percentile 

(µg m-3) 

Minimum 

(µg m-3) 

Maximum 

(µg m-3) 

Bengaluru Urban district 

December 2021 44 3.9 39 47 44 47 50 34 77 

January 2022 35 7.3 21 32 37 40 47 11 83 

Winter (DJF) 2021–

2022 
39 7.1 25 36 41 44 47 11 72 

DJFMAM 2021–2022 35 6.8 24 32 37 40 42 9 92 

Bruhat Bengaluru Mahanagara Palike (BBMP) 

December 2021 45 2.7 40 44 45 47 50 36 64 

January 2022 38 6.1 27 36 39 41 46 11 83 

Winter (DJF) 2021–

2022 
41 5.1 30 41 43 44 46 11 52 

DJFMAM 2021–2022 38 5.8 30 37 39 40 42 13 92 

Bengaluru Rural district 

December 2021 42 5.7 34 38 41 46 52 29 74 

January 2022 33 7.2 18 29 34 38 41 11 52 
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Month/season 
Mean 

(µg m-3) 

SD  

(µg m-3) 

5th 

percentile 

(µg m-3) 

25th 

percentile 

(µg m-3) 

50th 

percentile 

(µg m-3) 

75th 

percentile 

(µg m-3) 

95th 

percentile 

(µg m-3) 

Minimum 

(µg m-3) 

Maximum 

(µg m-3) 

Winter (DJF) 2021–

2022 
38 8.2 21 34 40 43 48 11 65 

DJFMAM 2021–2022 34 8.2 19 30 35 39 43 9 92 

Bengaluru peri-urban (region between BBMP and Bengaluru Rural) 

December 2021 44 3.9 39 42 44 47 50 34 77 

January 2022 35 7.3 21 32 37 40 45 11 83 

Winter (DJF) 2021–

2022 
39 7.1 25 36 41 44 47 11 72 

DJFMAM 2021–2022 35 6.8 24 32 37 40 42 9 92 

Whole study area (Bengaluru Urban + Bengaluru Rural districts) 

December 2021 43 5.0 35 39 43 46 51 29 77 

January 2022 34 7.4 19 30 36 39 43 11 83 

Winter (DJF) 2021– 

2022 
39 7.7 22 35 40 43 48 11 72 

DJFMAM 2021–2022 35 7.6 21 31 36 39 43 9 92 
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5. Discussion 

The current study is one of the most comprehensive studies in terms of methodologies used, area 

covered, and pollutants measured in an LMIC urban setting. We sampled three air pollutants over 

~1000 km (~10% of the city roads) in Bengaluru, covering different road types and 

neighbourhoods. The mobile monitoring was complemented by a city-wide 55-node stationary 

low-cost sensor network for ambient PM2.5 measurements that covered different land-use types. 

Ultra-high-resolution mapping of Bengaluru at this scale has never been done before. Pollution 

maps of all pollutants follow a predictable pattern, with the highest concentrations on highways 

and main roads. However, clear gradients appear as we move away from main roads. There is a 

large spatial variability within neighbourhoods. This is in agreement with findings from Apte et 

al. (2017) in Oakland, where pollutant concentrations varied up to eight-fold times within the 

same city block. Spatial representativeness of the maps increases with increasing number of rides 

as maps become more stable.  

Differences in on-road concentrations by road type were more pronounced in UFPs and BC and 

subtle for PM2.5. This could be because PM2.5 is a regional pollutant with natural and 

anthropogenic sources, while BC and UFPs are more local. UFPs and BC prediction maps 

correlated highly and revealed higher concentrations in the western part of the city. Additionally, 

prediction maps of PM2.5 across all months and seasons reveal that both urban and rural regions 

are equally polluted.  

In all on-road LUR models, road features such as highway road length and tertiary road length 

within 25 m were found to be significant predictors. This shows that on-road air pollution levels 

are being influenced by spatially immediate sources. Most models also included indicators for 

green space or shrubland as significant predictors. UFPs models were the best performers and 

could explain 58% variability. Results indicate that BC and UFPs models are superior to PM2.5 

models, reflecting the limited predictability of the latter. Pollutants with higher spatial variability 

are often better predicted by LUR models. As seen in the prediction maps, PM2.5 is more spatially 

homogeneous when compared to BC and UFPs maps. This phenomenon can also be observed in 

‘data only’ maps. PM2.5 maps show the least spatial variability, followed by UFPs and BC. The 

results are in agreement with Blanco et al.’s (2022) mobile monitoring work from Seattle, which 

shows the highest spatial variability in UFPs (17%), followed by BC (8%) and PM2.5 (2%). 

We found that LUR models for all pollutants improved (in terms of adjusted-R2 and RMSE) with 

increasing number of rides. We covered the entire mobile monitoring route at least four times. To 

identify the optimal number of passes required for robust estimates, we covered a subset of the 

roads eight and 12 times. Progressively, fewer routes were sampled for eight and 12 ride passes 

to optimise resources. In other words, we found that capturing more temporal variation 

(increasing the number of passes on selected roads) rather than spatial variation (driving on more 

roads for fewer passes) leads to better performance of LURs. In our study, LUR models that were 

trained on data from 12 rides (with fewer roads covered) resulted in better models than those 

trained on data from four rides (with more roads covered). These findings are consistent with 

that of Messier et al. (2018) in Oakland where models were more sensitive to number of passes 

than road coverage.  

Average PM2.5 values for the stationary network across all 55 sites ranged between 36 µg m-3 

and 42 µg m-3 for winter and summer, respectively. PM2.5 levels and their spatial variability were 

relatively higher during the winter months compared to the summer months. This could be 
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because of increased anthropogenic activities, low temperatures, and stagnant weather 

conditions during winters. In comparison, on-road PM2.5 values were higher than those from 

ambient stationary sensor networks. This could be because of the following reasons: (i) the 

difference in the extent of the study region (on-road measurements were limited to urban areas, 

while ambient measurements were carried out in peri-urban and rural areas of Bengaluru), (ii) 

on-road measurements were limited to daytime, while ambient measurements were performed 

round the clock, or (iii) the source proximity was much closer to the instrument inlet compared 

to that of the ambient PM2.5 during mobile monitoring. A list of advantages and disadvantages and 

a comprehensive literature review of mobile monitoring LUR models are given in Xu et al. (2021). 

LUR models from the stationary network data reveal that green spaces (shrubland) and road 

features are significant predictors of PM2.5. Winter models performed better than summer models 

and explained ~40% of spatial variability in PM2.5. Being able to build an LUR model using data 

from the LCS network is one of the possible practical applications of such networks to understand 

the spatial distribution of pollution levels. Surprisingly, prediction maps of PM2.5 across all months 

and seasons reveal that both urban and rural regions are equally polluted.  

However, overall, PM2.5 models from both stationary and mobile measurements have limited 

predictability (lower adjusted-R2) compared to BC and UFPs models. This could be because of (i) 

less variability in spatial PM2.5 measurements, (ii) heterogeneous pollution sources that are not 

explained by predictors, (iii) a lack of background monitoring stations to account for the 

transported component of PM2.5, (iv) rapidly varying (in space and time) PM2.5 sources and their 

strengths, or (v) a lack of data on relevant predictor variables (e.g., traffic data). In areas with 

homogeneous sources of PM2.5, LUR models show better predictive capability. For example, in the 

Cardiovascular Health Effects of Air pollution in Telangana, India (CHAI), project from rural south 

India, both PM2.5 and BC LUR models performed much better and were able to explain ~58% and 

79% variability in PM2.5 and BC, respectively, (Sanchez et al., 2018) with biomass burning as the 

primary source of particulate matter. Accounting for diurnal patterns may lead to the training of 

better-performing models, especially for PM2.5. For example, in Delhi, Saraswat et al. (2013) 

accounted for strong temporal (diurnal) patterns by developing different LUR models for morning 

and afternoon with better success (R2 >0.7 for the PM2.5 model). In the current study, we used 

hourly factors to correct the mobile monitoring data to daytime mean values. 

A major challenge in LUR modelling is the availability of reliable predictor data. In the ESCAPE 

project, researchers used fewer sites (~20) for each area and developed LUR models of 20 

different European study areas. R2 for PM2.5 LUR models ranged between 0.35 and 0.94, with a 

median of 0.71. Models with lower R2 either had minimal variation in measurements or had 

limited availability of predictor data, especially traffic intensity. In current models, we use road 

type and length as proxies for traffic data, but it is possible that variations in traffic intensity may 

not be completely captured. Availability of data on traffic intensity, vehicle type, or density may 

help characterise this important source further and improve the prediction capability of models. 

Additionally, it was hard to find a background site near our study area to capture the levels of the 

transported component of PM2.5. 

This report showcases results from data collected until May 2022 for the performance evaluation 

of LCSs. The comparison of LCS performances shows little seasonality between winter and 

summer months. As the next step and continuation of project activities, we will continue to collect 

data for the rest of the year, which will allow us to compare sensor performance across all seasons. 

Similarly, we are planning to continue collecting network ambient PM2.5 data and build LUR 
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models for the rest of the year, which will allow us to predict seasonal and annual ambient PM2.5. 

This study is limited to particulate matter monitoring using ambient and mobile monitoring 

approaches. Future studies may focus on the characterisation of gaseous criteria pollutants by 

employing multi-pollutant sensors in ambient sites. Measuring multiple pollutants together can 

be a cost-effective way to help inform more comprehensive pollution mitigation policies. 

5.1 Policy implications 

Based on the current study findings, the following policy recommendations are proposed:  

1. Prioritise mitigation activities abating vehicular emissions in the western parts of the BBMP 

area. 

2. Adopt regional strategies for the reduction of air pollution rather than opting for city-specific 

action plans. (PM2.5 is a regional pollutant, and only minute differences were observed in 

spatial PM2.5 levels across urban, peri-urban, and rural areas of Bengaluru.)  

3. Establish representative regulatory air pollution monitoring stations in rural and peri-urban 

areas. 

4. Audit unorganised polluting industries/activities in the outskirts of Bengaluru. 

We accomplished high-resolution city-wide air pollution mapping through a combination of direct 

measurements and statistical modelling. An integrated monitoring framework that involves 

strategically placed LCSs and occasional high-resolution mapping can inform and complement the 

evolving traditional reference-grade monitoring systems. With a dense network of PurpleAir 

sensors, we had 1 PM2.5 sensor per 17.6 km2 compared to 1 monitor per 92.6 km2 (the density of 

reference-grade monitors in the city). 

High-resolution city-wide pollution maps from mobile monitoring and LUR model predictions 

reveal spatial gradients and pollution hotspots. Identifying these hotspots can be the first step 

toward geographically targeted pollution mitigation efforts. These pollution maps can also be 

overlaid with locations of schools, hospitals, and nursing homes to characterise the air pollution 

exposure of vulnerable populations to inform pollution mitigation policies. Land use varies across 

the city, and non-residential on-road sampling reflects exposure of specific populations—such as 

roadside store owners, street vendors, and traffic police—to pollutants apart from short-term 

commuters. People involved in driving-related occupations such as e-commerce delivery services, 

taxi services, and auto drivers are also exposed to pollutants.  

Since these methods can capture spatio-temporal variations, they can be used in several policy-

relevant applications. While on-road measurements allow for the characterisation of air pollution 

exposure by measuring levels closer to where people live and breathe, ambient measurements 

can be useful for regulatory purposes. For example, characterising spatial patterns of PM2.5 levels 

using LCSs can inform the siting for installing reference-grade sensors in cities with no regulatory 

monitoring. For cities with some level of regulatory monitoring, it can help inform the siting of 

new reference sensors to fill data gaps. Given the portability and ease of installation and 

operability of low-cost sensors, they can also potentially help in evaluating geographically 

targeted pollution mitigation measures by measuring pollution levels before, during, and after the 

implementation of mitigation measures. Identifying pollution hotspots could help locate specific 

sources to prioritise local action and resources. Exposure data collected from these methods can 

be used for health impact assessments to estimate the health and economic burden of air 

pollution on a particular city or population, thereby helping policymakers make informed 

decisions while allocating scarce resources. 
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6. Limitations and Challenges 

6.1 Mobile Monitoring 

Mobile monitoring in a highly populated urban centre such as Bengaluru poses unique challenges 

for project implementation. First, it can be resource intensive. Wall-to-wall driving, where we plan 

to cover every lane to capture neighbourhood-level variability, sometimes requires navigating 

through tightly packed lanes with vehicles parked on both sides. At times, we have had to skip 

roads completely that look viable on the map but are not practically navigable because of limited 

space. Also, factors such as unplanned and indefinite road closures and poor road conditions led 

to occasional changes in the study routes. Such uncertainties call for on-the-fly decision-making, 

necessitating a research field staff to accompany the driver during all mobile monitoring rides. 

The field staff also helps keep a check on instrument functioning to ensure data quality.  

Second, air-pollution measurements, especially from optical instruments, on a mobile platform 

are susceptible to vibration-related noise because of (poor) road conditions and vehicle 

suspension effectiveness. In our study, we applied appropriate corrections for the BC 

measurement to remove vibration-related artefacts.  

Third, our monitoring platform (car) was fuelled by CNG, which is low-emitting but not 

completely emissions-free. Emissions from the vehicle can bias the measurements to some extent. 

An electric vehicle (i.e., a zero-tailpipe emissions vehicle) would be the best choice for a mobile 

platform, but the battery capacity of the vehicle limits the number of monitoring kilometres per 

session. 

Finally, there are practical constraints on the range of data collection. Bengaluru has a long rainy 

season, limiting the number of monitoring days. Excluding rainy days may also lead to an 

overestimation of average pollution concentrations. Because of safety reasons, mobile monitoring 

was conducted only during daytime. Thus, night-time concentrations are not captured in this 

campaign. High traffic and poor road conditions also lead to low average driving speeds, limiting 

the distance covered.  

6.2 Stationary network 

Most of the PA sensors in the project were hosted in residential buildings and institutions such as 

college and school campuses. Regular maintenance and upkeep of sensors depend on getting 

access to the site premises promptly. However, because of Covid-19 (coronavirus disease) 

restrictions, some of the sites could not be accessed for extended durations. Most schools and 

colleges moved to the online mode of instruction because of safety concerns and lockdowns; 

therefore, we did not always have access to sensor sites. Apart from pandemic-related constraints, 

a host's enthusiasm and attitude toward the project may also change because of various reasons 

that are outside our control. For long projects, a sense of fatigue may set in, impacting the host's 

relationship with the project team. We were not able to access sensor sites in such cases. Despite 

these challenges, we were able to retrieve more than 75% of sensor data. 

Given that aerosol properties change with time and space, it is ideal to perform LCS PM2.5 

calibration over a range of concentrations and conditions that captures variations in the 

composition of PM within the study region. However, because of resource constraints, we trained 

the LCS calibration model using just one collocation site. Additionally, depending on the 

availability and location of host sites, some monitors were installed above the prescribed height 

of 10 m above the ground.  



 

64     www.cstep.in  

CSTEP 

Lastly, a common limitation for both mobile and stationary monitoring projects is the absence of 

an emission-free background reference site. This can impact the LUR modelling in precisely 

accounting for the transported component or pollution.   
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7. Summary 

The current study uses an LCS network, regulatory data, and mobile monitoring data to develop 

high-resolution spatial air pollution maps concurrently in the same urban geography. The mobile 

monitoring campaign included repeat measurements of on-road PM2.5, BC, and UFPs over ~10% 

of Bengaluru roads, covering all major neighbourhoods and road types. More than 2 million data 

points were collected during the study. Quality-checked data were gridded onto 50 m road 

segments and used to build LUR models. We also established a city-wide 55-node PurpleAir LCS 

network covering urban, peri-urban, and rural parts of Bengaluru. The network measurements of 

ambient PM2.5 were carried out during the winter and summer seasons of 2021–2022. We also 

collocated various LCSs with BAM to investigate the accuracy of the PM2.5 measurements. The key 

results obtained from the study are summarised below. 

• Spatial variability in PM2.5 observations was higher during winter compared to summer. 

The seasonal mean PM2.5 was around 42 µg m-3 and 36 µg m-3 for winter and summer, 

respectively. Monthly and seasonally aggregated PM2.5 values were used to build LUR 

models.  

• Across the study period, predicted ambient PM2.5 values ranged between 10 and 100 µg 

m-3. Most of the study region was characterised by PM2.5 levels less than the daily national 

standard (60 µg m-3), and around half of the spatial PM2.5 values were less than the annual 

national standard (40 µg m-3).  

• On-road air pollution levels were found to be 2–10 times higher than ambient pollution 

levels. For the study routes, the average PM2.5, BC, and UFPs concentrations were found to 

be 73 µg m-3, 31 µg m-3, and 68 x 103 cm-3, respectively. The representativeness of on-road 

pollution levels increased with the increasing number of repeat rides. The highest on-road 

pollution levels were observed over major roads, followed by arterial and residential 

roads, and the gradient was shallower for PM2.5 compared to other pollutants. 

• For LUR models developed using mobile monitoring air pollution data, area sources/sinks 

emerged as potential predictors for most of the ambient PM2.5 models, while areas and 

line sources/sinks were observed as final predictors for the mobile monitoring air 

pollution models. 

• LUR models trained on mobile monitoring data showed better performance compared to 

ambient LUR models in terms of the model adjusted-R2. In terms of RMSE, ambient models 

performed better. Among ambient PM2.5 models, winter models performed better than 

summer models. Among on-road air pollution models, BC and UFPs models performed 

better than PM2.5 models. Models trained using air pollution data from 12 repeat rides 

were able to explain the variance in the data better. 

• The daytime on-road mean PM2.5, BC, and UFPs values were ~65 µg m-3, 18 µg m-3, and 38 

⨯ 103 cm-3, respectively. Major roads (including highways and the Outer Ring Road) were 

characterised by higher levels of pollution (PM2.5: ~81 µg m-3, BC: ~39 µg m-3, and UFPs: 

~80 ⨯ 103 cm-3) compared to arterial, residential, and unclassified roads. The difference 

in concentrations by road type is more pronounced for BC and UFPs than for PM2.5. 

• Based on the collocation (BAM and LCSs) data analysis, we observed that a multilinear 

model (with RH and PM2.5 as predictors) performed best and was further used for 

correcting ambient PA PM2.5 measurements. The RMSE in the uncorrected PA PM2.5 was 

reduced by almost three times after applying the correction model.  
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• Ten different PM LCS were evaluated, and the bias (RMSE) in the hourly PM2.5 

measurements ranged between 8 and 34 µg m-3. The bias was marginally reduced when 

daily means were compared instead of hourly means. Plantower-based LCSs performed 

relatively better. Not much seasonality was observed in the performance of LCSs. 
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9. Appendix A  

Table A1: Mobile monitoring route details 

Route name 
Number of 

repeat rides 

Actual road 

length (km) 

Unique 

road length 

(km) 

Major 

roads (km) 

Arterial 

roads (km) 

Residential 

roads (km) 

Unclassified 

roads (km) 
Areas covered 

MAL 12 90 79 27 28 18 7 

Malleshwaram, 

Vayalikaval, Sadashiv 

Nagar, New BEL Road, 

Central Business Road 

KAN 8 140 102 24 68 5 5 

Kannuru, Thanisandra 

Main Road, Hennur 

Main Road, 

Ramamurthy Nagar, 

Old Madras Road, 

Bellary Road 

IND 12 105 74 17 27 29 1 

Indiranagar, 

Marathahalli, ITPL 

Main Road, Whitefield 

Main Road 

HSR 4 140 88 33 29 25 2 
HSR Layout, Sarjapur 

Road, SH-35, Whitefield 

PNY 4 90 54 4 25 9 17 Peenya Industrial Area 



 

71    www.cstep.in  

CSTEP 

RRN 12 130 117 27 27 40 22 

RR Nagar, Mysore Road, 

Turahalli Forest, 

Kanakpura Road, 

Bannerghatta Road 

YLK 12 90 63 4 27 15 18 
Yelahanka New Town, 

Judicial Layout, SH-9 

ORR 12 105 88 56 10 20 2 

Outer Ring Road, 

Dollars Colony, 

Kammanahalli 

VIJ 8 122 89 60 16 12 1 

Vijayanagar, NICE Road, 

Hosur Road, Chord 

Road, HMT Main Road 

JAY 8 120 74 14 33 24 2 

Jayanagar, Lalbagh 

Main Road, Marigowda 
Road 

CRN 4 95 49 8 23 12 6 

C V Raman Nagar, 

Vignan Nagar, Suranjan 

Das Road, Kasturi 

Nagar Main Road 

Total  96 1227 877 274 313 209 83  

*Major roads = primary + highways+ primary trunk + motor ways (OSM classification); arterial = secondary + tertiary + motor link + primary link + 

second link + trunk link + service; and residential roads = residential + living street  



 

72     www.cstep.in  

CSTEP 

Table A2: Technical specifications of LCSs under evaluation 

Sensor Model Display 
Rated voltage 

(V) 
Rated current 

(mA) 
Battery Local storage GPS module Size (mm) 

BlueSky TSI-8143 No 5 100 No Yes No 
160 x 140 x 

120 

Airveda PM2510THWP-HC No 220 NA Yes Yes No 240 x 160 x 90 

Aerogram Eziostat No NA NA Optional Yes No 115 x 65 x 25 

Prkruti - No 10 500 Yes Yes Yes 
450 x 450 x 

200 

Atmos -I Plantower-based Yes 5 V DC 1500 max Yes Yes Yes 
420 x 200 x 

140 

Atmos II Sensirion-based Yes 5 V DC 1500 max Yes Yes Yes 
420 x 200 x 

140 

Prana Air 
Outdoor Air Quality 

Monitor 
No 5 70 Yes Yes Optional 150 x 50 x 200 

PurpleAir PA-II-SD No 5 180 No Yes No 90 x 90 x 125 

PAQS Indoor monitor Yes NA NA Yes Yes No 220 x 180 x 50 

Aurassure - Yes 12–24 1000 Optional Optional No 110 x 100 x 40 
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Table A3: Operating specifications of LCSs under evaluation 

Sensor 
Laser 

counter 
Pollutant 

PM2.5 

measurement 

range 

(μg/m3) 

Logging 

interval 

(minutes) 

Meteorological 

sensor 

Temperature 

measurement 

range (°C) 

RH 

measurement 

range (%) 

Remarks 

BlueSky Sensirion 
PM1, PM2.5, 

PM4, PM10 
0–1000 1 Yes -40 to 125 0 to 95 

Additional 

subscription for 

high-resolution 

data 

Airveda Nova PM2.5, PM10 0–999 30 Yes 10 to 60 NA 

Heated inlet, 

additional 

subscription for 

high-resolution 

data 

Aerogram Plantower 
PM1, PM2.5, 

PM10 
0–1000 0.5 Yes -40 to 85 NA - 

Prkruti Winsen PM2.5, PM10 0–500 15 Yes -40 to +125 0 to 100 - 

Atmos I Plantower PM2.5, PM10 <1000 1 Yes -10 to 60 0 to 99 - 

Atmos II Sensirion PM2.5, PM10 <1000 1 Yes -10 to 60 0 to 99 - 

Prana Air PAS-OUT-01 
PM1, PM2.5, 

PM10 
0-1500 0.5 Yes 0 to 60 5 to 95 - 

PurpleAir Plantower 
PM1, PM2.5, 

PM10 
0–1000 2 Yes -40 to 85 0 to 100 - 

PAQS Honeywell PM2.5, PM10 0–900 30 Yes -10 to 100 0 to100 - 

Aurassure Plantower PM2.5, PM10 <1000 1 Yes 0 to 60 <85% - 
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Figure A1: Time series of daily mean ambient PM2.5 from collocated LCSs and BAM 

 
Figure A2: Scatter plots of daily mean LCSs and BAM PM2.5 for winter (DJF). Red and black lines indicate linear fit and 

1:1 lines, respectively. 

 
Figure A3: Scatter plots of daily mean LCSs and BAM PM2.5 for summer (MAM). Red and black lines indicate linear fit 

and 1:1 lines, respectively. 
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Table A4: Season-wise performance statistics of daily mean LCSs PM2.5 

(N represents the number of paired data points) 

Sensor 
N R2 RMSE (µg m-3) NRMSE 

DJF MAM DJF MAM DJF MAM DJF MAM 

BlueSky 89 76 0.91 0.93 13.6 16.5 0.32 0.40 

Airveda 89 80 0.84 0.84 11.1 11.5 0.26 0.28 

Aerogram 89 75 0.93 0.91 9.4 5.5 0.22 0.14 

Prkruti 88 68 0.82 0.83 18.8 24.3 0.45 0.67 

Atmos I 89 91 0.93 0.90 6.1 4.4 0.14 0.11 

Atmos II 29 91 0.94 0.90 4.9 12.5 0.11 0.32 

Prana Air 63 82 0.82 0.69 7.9 12.8 0.19 0.33 

PurpleAir (cf_atm) 89 87 0.94 0.90 9.0 6.1 0.21 0.16 

PAQS 89 91 0.78 0.82 31.4 30.4 0.74 0.78 

Aurassure NA 53 NA 0.79 NA 8.7 NA 0.23 

 

 

Figure A4: Scatter plots of hourly LCSs and the meteorological station RH (%). Red and black lines indicate linear fit 

and 1:1 lines, respectively. 

 

Figure A5: Scatter plots of hourly LCSs and the meteorological station temperature (T, ̊ C). Red and black lines indicate 

linear fit and 1:1 lines, respectively. 
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Table A5: Performance statistics of hourly LCSs RH 

Sensor N R2 RMSE (%) NRMSE 

BlueSky 3890 0.92 17.3 0.28 

Airveda 4038 0.98 15.4 0.24 

Aerogram 3906 0.94 14.3 0.23 

Prkruti 3148 0.92 11.0 0.17 

Atmos I 4319 0.93 29.6 0.46 

Atmos II 2844 0.89 18.1 0.30 

Prana Air 3157 0.93 6.7 0.11 

PurpleAir (cf_atm) 4204 0.94 25.4 0.40 

PAQS 4295 0.94 29.7 0.47 

Table A6: Performance statistics of hourly LCSs temperature (T) 

Sensor N R2 RMSE (oC) NRMSE 

BlueSky 3890 0.89 6.5 0.26 

Airveda 4038 0.96 4.4 0.18 

Aerogram 3906 0.92 4.8 0.19 

Prkruti 3148 0.88 5.4 0.23 

Atmos I 4319 0.91 7.4 0.30 

Atmos II 2844 0.93 4.7 0.18 

Prana Air 3157 0.91 4.5 0.18 

PurpleAir (cf_atm) 4204 0.92 7.0 0.28 

PAQS 4295 0.87 3.0 0.12 
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Table A7: Regression coefficients of PA PM2.5 monthly correction models 

Months Dec 2021 Jan 2022 Feb 2022 Mar 2022 Apr 2022 May 2022 

Model R2 0.95 0.85 0.94 0.93 0.91 0.57 

Intercept 

(p-value) 

-19.35 

(0) 

-6.16 

(1e-4) 

-14.93 

(0) 

-10.59 

(0) 

-14.84 

(0) 

-8.85 

(3e-5) 

BAM coefficient 

(p-value) 

1.54 

(0) 

1.23 

(0) 

1.45 

(0) 

1.47 

(0) 

1.60 

(0) 

1.13 

(0) 

RH coefficient 

(p-value) 

0.57 

(0) 

0.53 

(0) 

0.71 

(0) 

0.52 

(0) 

0.40 

(0) 

0.25 

(0) 

Table A8: Performance metrics of month-specific multivariate calibration models. 

N represents the number of paired data points. 

Months 

N R2 RMSE (µg m-3) NRMSE 

Hourly Daily Hourly Daily Hourly Daily Hourly Daily 

Dec 2021 729 31 0.95 0.98 5.9 3.0 0.14 0.07 

Jan 2022 706 30 0.84 0.90 10.4 5.4 0.25 0.13 

Feb 2022 651 28 0.90 0.96 5.6 2.9 0.13 0.07 

Mar 2022 649 28 0.92 0.98 5.6 2.3 0.12 0.05 

Apr 2022 697 30 0.91 0.97 4.7 2.1 0.12 0.06 

May 2022 654 28 0.58 0.51 9.4 7.7 0.32 0.26 
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Figure A6: Ride-to-ride variations in on-road gridded pollutant levels. Colours indicate different routes. The dot 

indicates the median, and whiskers indicate the inter-quartile range. 
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Figure A7: Route maps of on-road PM2.5, BC, and UFPs derived using data from eight repeat rides 



 

80     www.cstep.in 

CSTEP 

 

Figure A8: Route-wise comparison of ambient and on-road PM2.5 and BC 
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Figure A9: Month- and site-wise daily mean PM2.5 distribution  
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10. Appendix B 

As part of the project, we developed a desktop application (in R Shiny) to visualise and manage 

sensor history. Currently, the application has all the basic functionalities. It is useful in sharing 

details of installation and history of sensors among team members and external people, if 

required. It tracks the status of installed sensors based on an input Google spreadsheet. The 

spreadsheet should contain relevant details of sensors. The application gives the flexibility to view 

information about a particular sensor or installation location filtered by location or sensor ID. The 

following screenshots navigate through various tabs and options available in the application.  

 

Figure B1: Home screen of the application 

On the home screen, (i) a list of tabs, (ii) a Google map with geographical locations of sensors, (iii) 

a table with sensor details, (iv) a search bar, and (v) two filter drop-down menus (by sensor id 

and name) are available.  

 

Figure B2: Home screen after filtering by a location name  

https://ilkaq.shinyapps.io/sensor_tracking/
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If a location name is selected, its geographical location will be highlighted (in red on the map) and 

details of sensors installed in that location will be listed with their start and end dates. 

 

Figure B3: Home screen after filtering by a sensor ID 

 

If a sensor is filtered by its ID, current and historical locations of its installation and start and end 

dates will be listed. 

 

Figure B4: Timeline tab 

If a location name is selected, the Timeline tab provides information on the active period of 

various sensors in that location in a single plot. Zoom in/out option for the calendar is also 

available.  
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Figure B5: Maintenance Log tab 

The Maintenance Log tab provides information on troubleshooting activities carried out on a 

sensor in that location. 

 
Figure B6: Sensor details  
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Sensor details will be displayed when the sensor ID field is selected. 

This application has scope for further development and currently operates on the input 

spreadsheet. It can be linked to the sensor website/dashboard to check current status, download 

data, plot, visualise, compare, and derive meaningful statistics. Data security and login features 

can also be added. 

 

 

 
Figure B7: Snapshots of input spreadsheets  
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